48hr.email/domain/statistics-store.js
2026-01-06 16:03:08 +01:00

931 lines
No EOL
34 KiB
JavaScript

const debug = require('debug')('48hr-email:stats-store');
const config = require('../application/config');
/**
* Statistics Store - Tracks email metrics and historical data
* Stores rolling statistics for receives, deletes, and forwards over the configured purge window
* Persists data to database for survival across restarts
*/
class StatisticsStore {
constructor(db = null) {
this.db = db;
this.currentCount = 0;
this.largestUid = 0;
this.hourlyData = [];
this.maxDataPoints = 1440; // Default: 1440 minutes (24 hours), but actual retention is purge window
this.lastCleanup = Date.now();
this.historicalData = null;
this.lastAnalysisTime = 0;
this.analysisCacheDuration = 5 * 60 * 1000; // Cache for 5 minutes
this.enhancedStats = null;
this.lastEnhancedStatsTime = 0;
this.enhancedStatsCacheDuration = 5 * 60 * 1000; // Cache for 5 minutes
if (this.db) {
this._loadFromDatabase();
}
debug('Statistics store initialized');
}
_getPurgeCutoffMs() {
const time = config.email.purgeTime.time;
const unit = config.email.purgeTime.unit;
let cutoffMs = 0;
switch (unit) {
case 'minutes':
cutoffMs = time * 60 * 1000;
break;
case 'hours':
cutoffMs = time * 60 * 60 * 1000;
break;
case 'days':
cutoffMs = time * 24 * 60 * 60 * 1000;
break;
default:
cutoffMs = 48 * 60 * 60 * 1000; // Fallback to 48 hours
}
return cutoffMs;
}
_loadFromDatabase() {
try {
const stmt = this.db.prepare('SELECT largest_uid, hourly_data, last_updated FROM statistics WHERE id = 1');
const row = stmt.get();
if (row) {
this.largestUid = row.largest_uid || 0;
if (row.hourly_data) {
try {
const parsed = JSON.parse(row.hourly_data);
const cutoff = Date.now() - this._getPurgeCutoffMs();
this.hourlyData = parsed.filter(entry => entry.timestamp >= cutoff);
debug(`Loaded ${this.hourlyData.length} hourly data points from database (cutoff: ${new Date(cutoff).toISOString()})`);
} catch (e) {
debug('Failed to parse hourly data:', e.message);
this.hourlyData = [];
}
}
debug(`Loaded from database: largestUid=${this.largestUid}, hourlyData=${this.hourlyData.length} entries`);
}
} catch (error) {
debug('Failed to load statistics from database:', error.message);
}
}
_saveToDatabase() {
if (!this.db) return;
try {
const stmt = this.db.prepare(`
UPDATE statistics
SET largest_uid = ?, hourly_data = ?, last_updated = ?
WHERE id = 1
`);
stmt.run(this.largestUid, JSON.stringify(this.hourlyData), Date.now());
debug('Statistics saved to database');
} catch (error) {
debug('Failed to save statistics to database:', error.message);
}
}
initialize(count) {
this.currentCount = count;
debug(`Initialized with ${count} emails`);
}
updateLargestUid(uid) {
if (uid >= 0 && uid > this.largestUid) {
this.largestUid = uid;
this._saveToDatabase();
debug(`Largest UID updated to ${uid}`);
}
}
recordReceive() {
this.currentCount++;
this._addDataPoint('receive');
debug(`Email received. Current: ${this.currentCount}`);
}
recordDelete() {
this.currentCount = Math.max(0, this.currentCount - 1);
this._addDataPoint('delete');
debug(`Email deleted. Current: ${this.currentCount}`);
}
recordForward() {
this._addDataPoint('forward');
debug(`Email forwarded`);
}
updateCurrentCount(count) {
const diff = count - this.currentCount;
if (diff < 0) {
for (let i = 0; i < Math.abs(diff); i++) {
this._addDataPoint('delete');
}
}
this.currentCount = count;
debug(`Current count updated to ${count}`);
}
getStats() {
this._cleanup();
const purgeWindowStats = this._getPurgeWindowStats();
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: this._getTimeline()
}
};
}
calculateEnhancedStatistics(allMails) {
if (!allMails || allMails.length === 0) {
this.enhancedStats = null;
return;
}
const now = Date.now();
if (this.enhancedStats && (now - this.lastEnhancedStatsTime) < this.enhancedStatsCacheDuration) {
debug(`Using cached enhanced stats (age: ${Math.round((now - this.lastEnhancedStatsTime) / 1000)}s)`);
return;
}
debug(`Calculating enhanced statistics from ${allMails.length} emails`);
const senderDomains = new Map();
const recipientDomains = new Map();
const hourlyActivity = Array(24).fill(0);
let totalSubjectLength = 0;
let subjectCount = 0;
let dayTimeEmails = 0;
let nightTimeEmails = 0;
allMails.forEach(mail => {
try {
if (mail.from && mail.from[0] && mail.from[0].address) {
const parts = mail.from[0].address.split('@');
const domain = parts[1] ? parts[1].toLowerCase() : null;
if (domain) senderDomains.set(domain, (senderDomains.get(domain) || 0) + 1);
}
if (mail.to && mail.to[0]) {
const parts = mail.to[0].split('@');
const domain = parts[1] ? parts[1].toLowerCase() : null;
if (domain) recipientDomains.set(domain, (recipientDomains.get(domain) || 0) + 1);
}
if (mail.date) {
const date = new Date(mail.date);
if (!isNaN(date.getTime())) {
const hour = date.getHours();
hourlyActivity[hour]++;
if (hour >= 6 && hour < 18) dayTimeEmails++;
else nightTimeEmails++;
}
}
if (mail.subject) {
totalSubjectLength += mail.subject.length;
subjectCount++;
}
} catch (e) {}
});
const topSenderDomains = Array.from(senderDomains.entries()).sort((a, b) => b[1] - a[1]).slice(0, 10).map(([domain, count]) => ({ domain, count }));
const topRecipientDomains = Array.from(recipientDomains.entries()).sort((a, b) => b[1] - a[1]).slice(0, 10).map(([domain, count]) => ({ domain, count }));
const busiestHours = hourlyActivity.map((count, hour) => ({ hour, count })).filter(h => h.count > 0).sort((a, b) => b.count - a.count).slice(0, 5);
const peakHourCount = busiestHours.length > 0 ? busiestHours[0].count : 0;
const peakHourPercentage = allMails.length > 0 ? Math.round((peakHourCount / allMails.length) * 100) : 0;
const activeHours = hourlyActivity.filter(count => count > 0).length;
const emailsPerHour = activeHours > 0 ? Math.round(allMails.length / activeHours) : 0;
const totalDayNight = dayTimeEmails + nightTimeEmails;
const dayPercentage = totalDayNight > 0 ? Math.round((dayTimeEmails / totalDayNight) * 100) : 50;
this.enhancedStats = {
topSenderDomains,
topRecipientDomains,
busiestHours,
averageSubjectLength: subjectCount > 0 ? Math.round(totalSubjectLength / subjectCount) : 0,
totalEmails: allMails.length,
uniqueSenderDomains: senderDomains.size,
uniqueRecipientDomains: recipientDomains.size,
peakHourPercentage,
emailsPerHour,
dayPercentage
};
this.lastEnhancedStatsTime = now;
debug(`Enhanced stats calculated: ${this.enhancedStats.uniqueSenderDomains} unique sender domains, ${this.enhancedStats.busiestHours.length} busy hours`);
}
analyzeHistoricalData(allMails) {
if (!allMails || allMails.length === 0) {
debug('No historical data to analyze');
return;
}
const now = Date.now();
if (this.historicalData && (now - this.lastAnalysisTime) < this.analysisCacheDuration) {
debug(`Using cached historical data (${this.historicalData.length} points, age: ${Math.round((now - this.lastAnalysisTime) / 1000)}s)`);
return;
}
debug(`Analyzing ${allMails.length} emails for historical statistics`);
const startTime = Date.now();
const histogram = new Map();
allMails.forEach(mail => {
try {
const date = new Date(mail.date);
if (isNaN(date.getTime())) return;
const minute = Math.floor(date.getTime() / 60000) * 60000;
if (!histogram.has(minute)) histogram.set(minute, 0);
histogram.set(minute, histogram.get(minute) + 1);
} catch (e) {}
});
this.historicalData = Array.from(histogram.entries()).map(([timestamp, count]) => ({ timestamp, receives: count })).sort((a, b) => a.timestamp - b.timestamp);
this.lastAnalysisTime = now;
const elapsed = Date.now() - startTime;
debug(`Built historical data: ${this.historicalData.length} time buckets in ${elapsed}ms`);
}
getEnhancedStats() {
this._cleanup();
const purgeWindowStats = this._getPurgeWindowStats();
const timeline = this._getTimeline();
const historicalTimeline = this._getHistoricalTimeline();
const prediction = this._generatePrediction();
const cutoff = Date.now() - this._getPurgeCutoffMs();
const historicalReceives = historicalTimeline.filter(point => point.timestamp >= cutoff).reduce((sum, point) => sum + point.receives, 0);
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives + historicalReceives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: timeline
},
historical: historicalTimeline,
prediction: prediction,
enhanced: this.enhancedStats
};
}
getLightweightStats() {
this._cleanup();
const purgeWindowStats = this._getPurgeWindowStats();
const timeline = this._getTimeline();
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: timeline
}
};
}
_getPurgeWindowStats() {
const cutoff = Date.now() - this._getPurgeCutoffMs();
const recent = this.hourlyData.filter(e => e.timestamp >= cutoff);
return {
receives: recent.reduce((sum, e) => sum + e.receives, 0),
deletes: recent.reduce((sum, e) => sum + e.deletes, 0),
forwards: recent.reduce((sum, e) => sum + e.forwards, 0)
};
}
_getTimeline() {
const now = Date.now();
const cutoff = now - this._getPurgeCutoffMs();
const buckets = {};
this.hourlyData.filter(e => e.timestamp >= cutoff).forEach(entry => {
const interval = Math.floor(entry.timestamp / 900000) * 900000; // 15 minutes
if (!buckets[interval]) {
buckets[interval] = { timestamp: interval, receives: 0, deletes: 0, forwards: 0 };
}
buckets[interval].receives += entry.receives;
buckets[interval].deletes += entry.deletes;
buckets[interval].forwards += entry.forwards;
});
return Object.values(buckets).sort((a, b) => a.timestamp - b.timestamp);
}
_getHistoricalTimeline() {
if (!this.historicalData || this.historicalData.length === 0) {
return [];
}
const cutoff = Date.now() - this._getPurgeCutoffMs();
const relevantHistory = this.historicalData.filter(point => point.timestamp >= cutoff);
const intervalBuckets = new Map();
relevantHistory.forEach(point => {
const interval = Math.floor(point.timestamp / 900000) * 900000; // 15 minutes
if (!intervalBuckets.has(interval)) {
intervalBuckets.set(interval, 0);
}
intervalBuckets.set(interval, intervalBuckets.get(interval) + point.receives);
});
const intervalData = Array.from(intervalBuckets.entries()).map(([timestamp, receives]) => ({ timestamp, receives })).sort((a, b) => a.timestamp - b.timestamp);
debug(`Historical timeline: ${intervalData.length} 15-min interval points within ${config.email.purgeTime.time} ${config.email.purgeTime.unit} window`);
return intervalData;
}
_generatePrediction() {
if (!this.historicalData || this.historicalData.length < 100) {
return [];
}
const now = Date.now();
const predictions = [];
const hourlyPatterns = new Map();
this.historicalData.forEach(point => {
const date = new Date(point.timestamp);
const hour = date.getHours();
if (!hourlyPatterns.has(hour)) {
hourlyPatterns.set(hour, []);
}
hourlyPatterns.get(hour).push(point.receives);
});
const hourlyAverages = new Map();
hourlyPatterns.forEach((values, hour) => {
const avg = values.reduce((sum, v) => sum + v, 0) / values.length;
hourlyAverages.set(hour, avg);
});
debug(`Built hourly patterns for ${hourlyAverages.size} hours from ${this.historicalData.length} data points`);
const purgeMs = this._getPurgeCutoffMs();
const purgeDurationHours = Math.ceil(purgeMs / (60 * 60 * 1000));
const predictionHours = Math.min(12, Math.ceil(purgeDurationHours * 0.2));
const predictionIntervals = predictionHours * 4;
for (let i = 1; i <= predictionIntervals; i++) {
const timestamp = now + (i * 15 * 60 * 1000);
const futureDate = new Date(timestamp);
const futureHour = futureDate.getHours();
let baseCount = hourlyAverages.get(futureHour);
if (baseCount === undefined) {
const allValues = Array.from(hourlyAverages.values());
baseCount = allValues.reduce((sum, v) => sum + v, 0) / allValues.length;
}
const scaledCount = baseCount * 15;
const randomFactor = 0.8 + (Math.random() * 0.4);
const predictedCount = Math.round(scaledCount * randomFactor);
predictions.push({
timestamp,
receives: Math.max(0, predictedCount)
});
}
debug(`Generated ${predictions.length} prediction points based on hourly patterns`);
return predictions;
}
_addDataPoint(type) {
const now = Date.now();
const minute = Math.floor(now / 60000) * 60000;
let entry = this.hourlyData.find(e => e.timestamp === minute);
if (!entry) {
entry = { timestamp: minute, receives: 0, deletes: 0, forwards: 0 };
this.hourlyData.push(entry);
}
entry[type + 's']++;
this._cleanup();
if (Math.random() < 0.1) {
this._saveToDatabase();
}
}
_cleanup() {
const now = Date.now();
if (now - this.lastCleanup < 5 * 60 * 1000) {
return;
}
const cutoff = now - this._getPurgeCutoffMs();
const beforeCount = this.hourlyData.length;
this.hourlyData = this.hourlyData.filter(entry => entry.timestamp >= cutoff);
if (beforeCount !== this.hourlyData.length) {
this._saveToDatabase();
debug(`Cleaned up ${beforeCount - this.hourlyData.length} old data points (keeping data for ${config.email.purgeTime.time} ${config.email.purgeTime.unit})`);
}
this.lastCleanup = now;
}
/**
* Record an email deleted event
*/
recordDelete() {
this.currentCount = Math.max(0, this.currentCount - 1)
this._addDataPoint('delete')
debug(`
Email deleted.Current: $ { this.currentCount }
`)
}
/**
* Record an email forwarded event
*/
recordForward() {
this._addDataPoint('forward')
debug(`
Email forwarded `)
}
/**
* Update current count (for bulk operations like purge)
* @param {number} count - New current count
*/
updateCurrentCount(count) {
const diff = count - this.currentCount
if (diff < 0) {
// Bulk delete occurred
for (let i = 0; i < Math.abs(diff); i++) {
this._addDataPoint('delete')
}
}
this.currentCount = count
debug(`
`)
}
/**
* Get current statistics
* @returns {Object} Current stats
*/
getStats() {
this._cleanup()
const purgeWindowStats = this._getPurgeWindowStats()
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: this._getTimeline()
}
}
}
/**
* Calculate enhanced statistics from current emails
* Privacy-friendly: uses domain analysis, time patterns, and aggregates
* @param {Array} allMails - Array of all mail summaries
*/
calculateEnhancedStatistics(allMails) {
if (!allMails || allMails.length === 0) {
this.enhancedStats = null
return
}
const now = Date.now()
if (this.enhancedStats && (now - this.lastEnhancedStatsTime) < this.enhancedStatsCacheDuration) {
debug(`
Using cached enhanced stats(age: $ { Math.round((now - this.lastEnhancedStatsTime) / 1000) }
s)
`)
return
}
debug(`
Calculating enhanced statistics from $ { allMails.length }
emails `)
// Track sender domains (privacy-friendly: domain only, not full address)
const senderDomains = new Map()
const recipientDomains = new Map()
const hourlyActivity = Array(24).fill(0)
let totalSubjectLength = 0
let subjectCount = 0
let withAttachments = 0
let dayTimeEmails = 0 // 6am-6pm
let nightTimeEmails = 0 // 6pm-6am
allMails.forEach(mail => {
try {
// Sender domain analysis
if (mail.from && mail.from[0] && mail.from[0].address) {
const parts = mail.from[0].address.split('@')
const domain = parts[1] ? parts[1].toLowerCase() : null
if (domain) {
senderDomains.set(domain, (senderDomains.get(domain) || 0) + 1)
}
}
// Recipient domain analysis
if (mail.to && mail.to[0]) {
const parts = mail.to[0].split('@')
const domain = parts[1] ? parts[1].toLowerCase() : null
if (domain) {
recipientDomains.set(domain, (recipientDomains.get(domain) || 0) + 1)
}
}
// Hourly activity pattern
if (mail.date) {
const date = new Date(mail.date)
if (!isNaN(date.getTime())) {
const hour = date.getHours()
hourlyActivity[hour]++
// Day vs night distribution (6am-6pm = day, 6pm-6am = night)
if (hour >= 6 && hour < 18) {
dayTimeEmails++
} else {
nightTimeEmails++
}
}
}
// Subject length analysis (privacy-friendly: only length, not content)
if (mail.subject) {
totalSubjectLength += mail.subject.length
subjectCount++
}
// Check if email likely has attachments (would need full fetch to confirm)
// For now, we'll track this separately when we fetch full emails
} catch (e) {
// Skip invalid entries
}
})
// Get top sender domains (limit to top 10)
const topSenderDomains = Array.from(senderDomains.entries())
.sort((a, b) => b[1] - a[1])
.slice(0, 10)
.map(([domain, count]) => ({ domain, count }))
// Get top recipient domains
const topRecipientDomains = Array.from(recipientDomains.entries())
.sort((a, b) => b[1] - a[1])
.slice(0, 10)
.map(([domain, count]) => ({ domain, count }))
// Find busiest hours (top 5)
const busiestHours = hourlyActivity
.map((count, hour) => ({ hour, count }))
.filter(h => h.count > 0)
.sort((a, b) => b.count - a.count)
.slice(0, 5)
// Calculate peak hour concentration (% of emails in busiest hour)
const peakHourCount = busiestHours.length > 0 ? busiestHours[0].count : 0
const peakHourPercentage = allMails.length > 0 ?
Math.round((peakHourCount / allMails.length) * 100) :
0
// Calculate emails per hour rate (average across all active hours)
const activeHours = hourlyActivity.filter(count => count > 0).length
const emailsPerHour = activeHours > 0 ?
Math.round(allMails.length / activeHours) :
0
// Calculate day/night percentage
const totalDayNight = dayTimeEmails + nightTimeEmails
const dayPercentage = totalDayNight > 0 ?
Math.round((dayTimeEmails / totalDayNight) * 100) :
50
this.enhancedStats = {
topSenderDomains,
topRecipientDomains,
busiestHours,
averageSubjectLength: subjectCount > 0 ? Math.round(totalSubjectLength / subjectCount) : 0,
totalEmails: allMails.length,
uniqueSenderDomains: senderDomains.size,
uniqueRecipientDomains: recipientDomains.size,
peakHourPercentage,
emailsPerHour: emailsPerHour,
dayPercentage
}
this.lastEnhancedStatsTime = now
debug(`
Enhanced stats calculated: $ { this.enhancedStats.uniqueSenderDomains }
unique sender domains, $ { this.enhancedStats.busiestHours.length }
busy hours `)
}
/**
* Analyze all existing emails to build historical statistics
* @param {Array} allMails - Array of all mail summaries with date property
*/
analyzeHistoricalData(allMails) {
if (!allMails || allMails.length === 0) {
debug('No historical data to analyze')
return
}
// Check cache - if analysis was done recently, skip it
const now = Date.now()
if (this.historicalData && (now - this.lastAnalysisTime) < this.analysisCacheDuration) {
debug(`
Using cached historical data($ { this.historicalData.length }
points, age: $ { Math.round((now - this.lastAnalysisTime) / 1000) }
s)
`)
return
}
debug(`
Analyzing $ { allMails.length }
emails
for historical statistics `)
const startTime = Date.now()
// Group emails by minute
const histogram = new Map()
allMails.forEach(mail => {
try {
const date = new Date(mail.date)
if (isNaN(date.getTime())) return
const minute = Math.floor(date.getTime() / 60000) * 60000
if (!histogram.has(minute)) {
histogram.set(minute, 0)
}
histogram.set(minute, histogram.get(minute) + 1)
} catch (e) {
// Skip invalid dates
}
})
// Convert to array and sort by timestamp
this.historicalData = Array.from(histogram.entries())
.map(([timestamp, count]) => ({ timestamp, receives: count }))
.sort((a, b) => a.timestamp - b.timestamp)
this.lastAnalysisTime = now
const elapsed = Date.now() - startTime
debug(`
Built historical data: $ { this.historicalData.length }
time buckets in $ { elapsed }
ms `)
}
/**
* Get enhanced statistics with historical data and predictions
* @returns {Object} Enhanced stats with historical timeline and predictions
*/
getEnhancedStats() {
this._cleanup()
const purgeWindowStats = this._getPurgeWindowStats()
const timeline = this._getTimeline()
const historicalTimeline = this._getHistoricalTimeline()
const prediction = this._generatePrediction()
// Calculate historical receives from purge time window
const cutoff = Date.now() - this._getPurgeCutoffMs()
const historicalReceives = historicalTimeline
.filter(point => point.timestamp >= cutoff)
.reduce((sum, point) => sum + point.receives, 0)
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives + historicalReceives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: timeline
},
historical: historicalTimeline,
prediction: prediction,
enhanced: this.enhancedStats
}
}
/**
* Get lightweight statistics without historical analysis (for API updates)
* @returns {Object} Stats with only realtime data
*/
getLightweightStats() {
this._cleanup()
const purgeWindowStats = this._getPurgeWindowStats()
const timeline = this._getTimeline()
return {
currentCount: this.currentCount,
allTimeTotal: this.largestUid,
purgeWindow: {
receives: purgeWindowStats.receives,
deletes: purgeWindowStats.deletes,
forwards: purgeWindowStats.forwards,
timeline: timeline
}
}
}
/**
* Get historical timeline for visualization
* Shows data for the configured purge duration, aggregated by hour
* @returns {Array} Historical data points
* @private
*/
_getHistoricalTimeline() {
if (!this.historicalData || this.historicalData.length === 0) {
return []
}
// Show historical data up to the purge time window
const cutoff = Date.now() - this._getPurgeCutoffMs()
const relevantHistory = this.historicalData.filter(point => point.timestamp >= cutoff)
// Aggregate by 15-minute intervals for better granularity
const intervalBuckets = new Map()
relevantHistory.forEach(point => {
const interval = Math.floor(point.timestamp / 900000) * 900000 // 15 minutes
if (!intervalBuckets.has(interval)) {
intervalBuckets.set(interval, 0)
}
intervalBuckets.set(interval, intervalBuckets.get(interval) + point.receives)
})
// Convert to array and sort
const intervalData = Array.from(intervalBuckets.entries())
.map(([timestamp, receives]) => ({ timestamp, receives }))
.sort((a, b) => a.timestamp - b.timestamp)
debug(`
Historical timeline: $ { intervalData.length }
15 - min interval points within $ { config.email.purgeTime.time }
$ { config.email.purgeTime.unit }
window `)
return intervalData
}
/**
* Generate prediction for next period based on historical patterns
* Uses config purge time to determine prediction window
* Predicts based on time-of-day patterns with randomization
* @returns {Array} Predicted data points
* @private
*/
_generatePrediction() {
if (!this.historicalData || this.historicalData.length < 100) {
return [] // Not enough data to predict
}
const now = Date.now()
const predictions = []
// Build hourly patterns from historical data
// Map hour-of-day to average receives count
const hourlyPatterns = new Map()
this.historicalData.forEach(point => {
const date = new Date(point.timestamp)
const hour = date.getHours()
if (!hourlyPatterns.has(hour)) {
hourlyPatterns.set(hour, [])
}
hourlyPatterns.get(hour).push(point.receives)
})
// Calculate average for each hour
const hourlyAverages = new Map()
hourlyPatterns.forEach((values, hour) => {
const avg = values.reduce((sum, v) => sum + v, 0) / values.length
hourlyAverages.set(hour, avg)
})
debug(`
Built hourly patterns
for $ { hourlyAverages.size }
hours from $ { this.historicalData.length }
data points `)
// Generate predictions for a reasonable future window
// Limit to 20% of purge duration or 12 hours max to maintain chart balance
// Use 15-minute intervals for better granularity
const purgeMs = this._getPurgeCutoffMs()
const purgeDurationHours = Math.ceil(purgeMs / (60 * 60 * 1000))
const predictionHours = Math.min(12, Math.ceil(purgeDurationHours * 0.2))
const predictionIntervals = predictionHours * 4 // Convert hours to 15-min intervals
for (let i = 1; i <= predictionIntervals; i++) {
const timestamp = now + (i * 15 * 60 * 1000) // 15 minute intervalsals
const futureDate = new Date(timestamp)
const futureHour = futureDate.getHours()
// Get average for this hour, or fallback to overall average
let baseCount = hourlyAverages.get(futureHour)
if (baseCount === undefined) {
// Fallback to overall average if no data for this hour
const allValues = Array.from(hourlyAverages.values())
baseCount = allValues.reduce((sum, v) => sum + v, 0) / allValues.length
}
// baseCount is already per-minute average, scale to 15 minutes
const scaledCount = baseCount * 15
// Add randomization (±20%)
const randomFactor = 0.8 + (Math.random() * 0.4) // 0.8 to 1.2
const predictedCount = Math.round(scaledCount * randomFactor)
predictions.push({
timestamp,
receives: Math.max(0, predictedCount)
})
}
debug(`
Generated $ { predictions.length }
prediction points based on hourly patterns `)
return predictions
}
/**
* Add a data point to the rolling history
* @param {string} type - Type of event (receive, delete, forward)
* @private
*/
_addDataPoint(type) {
const now = Date.now()
const minute = Math.floor(now / 60000) * 60000 // Round to minute
// Find or create entry for this minute
let entry = this.hourlyData.find(e => e.timestamp === minute)
if (!entry) {
entry = {
timestamp: minute,
receives: 0,
deletes: 0,
forwards: 0
}
this.hourlyData.push(entry)
}
entry[type + 's']++
this._cleanup()
// Save to database periodically (every 10 data points to reduce I/O)
if (Math.random() < 0.1) { // ~10% chance = every ~10 events
this._saveToDatabase()
}
}
/**
* Clean up old data points (older than email purge time)
* @private
*/
_cleanup() {
const now = Date.now()
// Only cleanup every 5 minutes to avoid constant filtering
if (now - this.lastCleanup < 5 * 60 * 1000) {
return
}
const cutoff = now - this._getPurgeCutoffMs()
const beforeCount = this.hourlyData.length
this.hourlyData = this.hourlyData.filter(entry => entry.timestamp >= cutoff)
if (beforeCount !== this.hourlyData.length) {
this._saveToDatabase() // Save after cleanup
debug(`
Cleaned up $ { beforeCount - this.hourlyData.length }
old data points(keeping data
for $ { config.email.purgeTime.time }
$ { config.email.purgeTime.unit })
`)
}
this.lastCleanup = now
}
/**
* Get aggregated stats for the purge time window
* @returns {Object} Aggregated counts
* @private
*/
/**
* Get timeline data for graphing (hourly aggregates)
* Uses purge time for consistent timeline length
* @returns {Array} Array of hourly data points
* @private
*/
_getTimeline() {
const now = Date.now()
const cutoff = now - this._getPurgeCutoffMs()
const buckets = {}
// Aggregate by 15-minute intervals for better granularity
this.hourlyData
.filter(e => e.timestamp >= cutoff)
.forEach(entry => {
const interval = Math.floor(entry.timestamp / 900000) * 900000 // 15 minutes
if (!buckets[interval]) {
buckets[interval] = { timestamp: interval, receives: 0, deletes: 0, forwards: 0 }
}
buckets[interval].receives += entry.receives
buckets[interval].deletes += entry.deletes
buckets[interval].forwards += entry.forwards
})
// Convert to sorted array
return Object.values(buckets).sort((a, b) => a.timestamp - b.timestamp)
}
}
module.exports = StatisticsStore