android: add MTE tests

To run them, connect an MTE-enabled device via adb and execute `atest HMallocTest:MemtagTest`.

Since these tests are not deterministic (and neither is hardened_malloc itself), it's better to run
them multiple times, e.g. `atest --iterations 30 HMallocTest:MemtagTest`.

There are also CTS tests that are useful for checking correctness of the Android integration:
`atest CtsTaggingHostTestCases`
pull/226/head
Dmitry Muhomor 2023-10-28 17:04:27 +03:00 committed by Daniel Micay
parent 5137d2da4d
commit 576328b1b4
5 changed files with 394 additions and 0 deletions

25
androidtest/Android.bp Normal file
View File

@ -0,0 +1,25 @@
java_test_host {
name: "HMallocTest",
srcs: [
"src/**/*.java",
],
libs: [
"tradefed",
"compatibility-tradefed",
"compatibility-host-util",
],
static_libs: [
"cts-host-utils",
"frameworks-base-hostutils",
],
test_suites: [
"general-tests",
],
data_device_bins_64: [
"memtag_test",
],
}

View File

@ -0,0 +1,13 @@
<?xml version="1.0" encoding="utf-8"?>
<configuration description="hardened_malloc test">
<target_preparer class="com.android.compatibility.common.tradefed.targetprep.FilePusher">
<option name="cleanup" value="true" />
<option name="push" value="memtag_test->/data/local/tmp/memtag_test" />
</target_preparer>
<test class="com.android.compatibility.common.tradefed.testtype.JarHostTest" >
<option name="jar" value="HMallocTest.jar" />
</test>
</configuration>

View File

@ -0,0 +1,16 @@
cc_test {
name: "memtag_test",
srcs: ["memtag_test.cc"],
cflags: [
"-Wall",
"-Werror",
"-Wextra",
"-O0",
],
compile_multilib: "64",
sanitize: {
memtag_heap: true,
},
}

View File

@ -0,0 +1,204 @@
// needed to uncondionally enable assertions
#undef NDEBUG
#include <assert.h>
#include <malloc.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <map>
#include <string>
#include <unordered_map>
using namespace std;
using u8 = uint8_t;
using uptr = uintptr_t;
using u64 = uint64_t;
const size_t DEFAULT_ALLOC_SIZE = 8;
const size_t CANARY_SIZE = 8;
void do_context_switch() {
utsname s;
uname(&s);
}
u8 get_pointer_tag(void *ptr) {
return (((uptr) ptr) >> 56) & 0xf;
}
void *untag_pointer(void *ptr) {
const uintptr_t mask = UINTPTR_MAX >> 8;
return (void *) ((uintptr_t) ptr & mask);
}
void tag_distinctness() {
if (rand() & 1) {
// make allocations in all of used size classes and free half of them
const int max = 21000;
void *ptrs[max];
for (int i = 0; i < max; ++i) {
ptrs[i] = malloc(max);
}
for (int i = 1; i < max; i += 2) {
free(ptrs[i]);
}
}
const size_t cnt = 3000;
const size_t iter_cnt = 5;
const size_t alloc_cnt = cnt * iter_cnt;
const int sizes[] = { 16, 160, 10240, 20480 };
for (size_t size_idx = 0; size_idx < sizeof(sizes) / sizeof(int); ++size_idx) {
const size_t full_alloc_size = sizes[size_idx];
const size_t alloc_size = full_alloc_size - CANARY_SIZE;
unordered_map<uptr, u8> map;
map.reserve(alloc_cnt);
for (size_t iter = 0; iter < iter_cnt; ++iter) {
uptr allocations[cnt];
for (size_t i = 0; i < cnt; ++i) {
u8 *p = (u8 *) malloc(alloc_size);
uptr addr = (uptr) untag_pointer(p);
u8 tag = get_pointer_tag(p);
assert(tag >= 1 && tag <= 14);
// check most recent tags of left and right neighbors
auto left = map.find(addr - full_alloc_size);
if (left != map.end()) {
assert(left->second != tag);
}
auto right = map.find(addr + full_alloc_size);
if (right != map.end()) {
assert(right->second != tag);
}
// check previous tag of this slot
auto prev = map.find(addr);
if (prev != map.end()) {
assert(prev->second != tag);
map.erase(addr);
}
map.emplace(addr, tag);
for (size_t j = 0; j < alloc_size; ++j) {
// check that slot is zeroed
assert(p[j] == 0);
// check that slot is readable and writable
p[j]++;
}
allocations[i] = addr;
// async tag check failures are reported on context switch
do_context_switch();
}
for (size_t i = 0; i < cnt; ++i) {
free((void *) allocations[i]);
}
}
}
}
u8* alloc_default() {
if (rand() & 1) {
int cnt = rand() & 0x3f;
for (int i = 0; i < cnt; ++i) {
(void) malloc(DEFAULT_ALLOC_SIZE);
}
}
return (u8 *) malloc(DEFAULT_ALLOC_SIZE);
}
volatile u8 u8_var;
void read_after_free() {
u8 *p = alloc_default();
free(p);
volatile u8 v = p[0];
(void) v;
}
void write_after_free() {
u8 *p = alloc_default();
free(p);
p[0] = 1;
}
void underflow_read() {
u8 *p = alloc_default();
volatile u8 v = p[-1];
(void) v;
}
void underflow_write() {
u8 *p = alloc_default();
p[-1] = 1;
}
void overflow_read() {
u8 *p = alloc_default();
volatile u8 v = p[DEFAULT_ALLOC_SIZE + CANARY_SIZE];
(void) v;
}
void overflow_write() {
u8 *p = alloc_default();
p[DEFAULT_ALLOC_SIZE + CANARY_SIZE] = 1;
}
void untagged_read() {
u8 *p = alloc_default();
p = (u8 *) untag_pointer(p);
volatile u8 v = p[0];
(void) v;
}
void untagged_write() {
u8 *p = alloc_default();
p = (u8 *) untag_pointer(p);
p[0] = 1;
}
map<string, function<void()>> tests = {
#define TEST(s) { #s, s }
TEST(tag_distinctness),
TEST(read_after_free),
TEST(write_after_free),
TEST(overflow_read),
TEST(overflow_write),
TEST(underflow_read),
TEST(underflow_write),
TEST(untagged_read),
TEST(untagged_write),
#undef TEST
};
int main(int argc, char **argv) {
setbuf(stdout, NULL);
assert(argc == 2);
auto test_name = string(argv[1]);
auto test_fn = tests[test_name];
assert(test_fn != nullptr);
assert(mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_ASYNC) == 1);
test_fn();
do_context_switch();
return 0;
}

View File

@ -0,0 +1,136 @@
package grapheneos.hmalloc;
import com.android.tradefed.device.DeviceNotAvailableException;
import com.android.tradefed.testtype.DeviceJUnit4ClassRunner;
import com.android.tradefed.testtype.junit4.BaseHostJUnit4Test;
import org.junit.Test;
import org.junit.runner.RunWith;
import java.io.IOException;
import java.util.ArrayList;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;
@RunWith(DeviceJUnit4ClassRunner.class)
public class MemtagTest extends BaseHostJUnit4Test {
private static final String TEST_BINARY = "/data/local/tmp/memtag_test";
enum Result {
SUCCESS,
// it's expected that the device is configured to use asymm MTE tag checking mode
ASYNC_MTE_ERROR,
SYNC_MTE_ERROR,
}
private static final int SEGV_EXIT_CODE = 139;
private void runTest(String name, Result expectedResult) throws DeviceNotAvailableException {
var args = new ArrayList<String>();
args.add(TEST_BINARY);
args.add(name);
var device = getDevice();
long deviceDate = device.getDeviceDate();
String cmdLine = String.join(" ", args);
var result = device.executeShellV2Command(cmdLine);
int expectedExitCode = expectedResult == Result.SUCCESS ? 0 : SEGV_EXIT_CODE;
assertEquals("process exit code", expectedExitCode, result.getExitCode().intValue());
if (expectedResult == Result.SUCCESS) {
return;
}
try {
// wait a bit for debuggerd to capture the crash
Thread.sleep(50);
} catch (InterruptedException e) {
throw new IllegalStateException(e);
}
try (var logcat = device.getLogcatSince(deviceDate)) {
try (var s = logcat.createInputStream()) {
String[] lines = new String(s.readAllBytes()).split("\n");
boolean foundCmd = false;
String cmd = "Cmdline: " + cmdLine;
String expectedSignalCode = switch (expectedResult) {
case ASYNC_MTE_ERROR -> "SEGV_MTEAERR";
case SYNC_MTE_ERROR -> "SEGV_MTESERR";
default -> throw new IllegalStateException(expectedResult.name());
};
for (String line : lines) {
if (!foundCmd) {
if (line.contains(cmd)) {
foundCmd = true;
}
continue;
}
if (line.contains("signal 11 (SIGSEGV), code")) {
if (!line.contains(expectedSignalCode)) {
break;
} else {
return;
}
}
if (line.contains("backtrace")) {
break;
}
}
fail("missing " + expectedSignalCode + " crash in logcat");
} catch (IOException e) {
throw new IllegalStateException(e);
}
}
}
@Test
public void tag_distinctness() throws DeviceNotAvailableException {
runTest("tag_distinctness", Result.SUCCESS);
}
@Test
public void read_after_free() throws DeviceNotAvailableException {
runTest("read_after_free", Result.SYNC_MTE_ERROR);
}
@Test
public void write_after_free() throws DeviceNotAvailableException {
runTest("write_after_free", Result.ASYNC_MTE_ERROR);
}
@Test
public void underflow_read() throws DeviceNotAvailableException {
runTest("underflow_read", Result.SYNC_MTE_ERROR);
}
@Test
public void underflow_write() throws DeviceNotAvailableException {
runTest("underflow_write", Result.ASYNC_MTE_ERROR);
}
@Test
public void overflow_read() throws DeviceNotAvailableException {
runTest("overflow_read", Result.SYNC_MTE_ERROR);
}
@Test
public void overflow_write() throws DeviceNotAvailableException {
runTest("overflow_write", Result.ASYNC_MTE_ERROR);
}
@Test
public void untagged_read() throws DeviceNotAvailableException {
runTest("untagged_read", Result.SYNC_MTE_ERROR);
}
@Test
public void untagged_write() throws DeviceNotAvailableException {
runTest("untagged_write", Result.ASYNC_MTE_ERROR);
}
}