Compare commits

..

No commits in common. "main" and "2024121200" have entirely different histories.

10 changed files with 54 additions and 97 deletions

View file

@ -11,9 +11,9 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
version: [14]
version: [12]
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v4
- name: Setting up gcc version
run: |
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-${{ matrix.version }} 100
@ -24,11 +24,9 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
version: [19, 20]
version: [14, 15]
steps:
- uses: actions/checkout@v6
- name: Install dependencies
run: sudo apt-get update && sudo apt-get install -y --no-install-recommends clang-19 clang-20
- uses: actions/checkout@v4
- name: Setting up clang version
run: |
sudo update-alternatives --install /usr/bin/clang++ clang++ /usr/bin/clang++-${{ matrix.version }} 100
@ -40,7 +38,7 @@ jobs:
container:
image: alpine:latest
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v4
- name: Install dependencies
run: apk update && apk add build-base python3
- name: Build
@ -48,7 +46,7 @@ jobs:
build-ubuntu-gcc-aarch64:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v6
- uses: actions/checkout@v4
- name: Install dependencies
run: sudo apt-get update && sudo apt-get install -y --no-install-recommends gcc-aarch64-linux-gnu g++-aarch64-linux-gnu libgcc-s1-arm64-cross cpp-aarch64-linux-gnu
- name: Build

4
.gitignore vendored
View file

@ -1,2 +1,2 @@
/out/
/out-light/
out/
out-light/

View file

@ -1,4 +1,4 @@
Copyright © 2018-2025 GrapheneOS
Copyright © 2018-2024 GrapheneOS
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View file

@ -1,4 +1,4 @@
# hardened_malloc
# Hardened malloc
* [Introduction](#introduction)
* [Dependencies](#dependencies)
@ -65,14 +65,14 @@ used instead as this allocator fundamentally doesn't support that environment.
## Dependencies
Debian stable (currently Debian 13) determines the most ancient set of
Debian stable (currently Debian 12) determines the most ancient set of
supported dependencies:
* glibc 2.41
* Linux 6.12
* Clang 19.1.7 or GCC 14.2.0
* glibc 2.36
* Linux 6.1
* Clang 14.0.6 or GCC 12.2.0
For Android, the Linux GKI 6.1, 6.6 and 6.12 branches are supported.
For Android, the Linux GKI 5.10, 5.15 and 6.1 branches are supported.
However, using more recent releases is highly recommended. Older versions of
the dependencies may be compatible at the moment but are not tested and will
@ -83,7 +83,7 @@ there will be custom integration offering better performance in the future
along with other hardening for the C standard library implementation.
For Android, only the current generation, actively developed maintenance branch of the Android
Open Source Project will be supported, which currently means `android16-qpr1-release`.
Open Source Project will be supported, which currently means `android15-release`.
## Testing
@ -159,17 +159,14 @@ line to the `/etc/ld.so.preload` configuration file:
The format of this configuration file is a whitespace-separated list, so it's
good practice to put each library on a separate line.
For maximum compatibility `libhardened_malloc.so` can be installed into
`/usr/lib/` to avoid preload failures caused by AppArmor profiles or systemd
ExecPaths= restrictions. Check for logs of the following format:
ERROR: ld.so: object '/usr/local/lib/libhardened_malloc.so' from /etc/ld.so.preload cannot be preloaded (failed to map segment from shared object): ignored.
On Debian systems `libhardened_malloc.so` should be installed into `/usr/lib/`
to avoid preload failures caused by AppArmor profile restrictions.
Using the `LD_PRELOAD` environment variable to load it on a case-by-case basis
will not work when `AT_SECURE` is set such as with setuid binaries. It's also
generally not a recommended approach for production usage. The recommendation
is to enable it globally and make exceptions for performance critical cases by
running the application in a container/namespace without it enabled.
running the application in a container / namespace without it enabled.
Make sure to raise `vm.max_map_count` substantially too to accommodate the very
large number of guard pages created by hardened\_malloc. As an example, in
@ -255,7 +252,7 @@ The following boolean configuration options are available:
* `CONFIG_WRITE_AFTER_FREE_CHECK`: `true` (default) or `false` to control
sanity checking that new small allocations contain zeroed memory. This can
detect writes caused by a write-after-free vulnerability and mixes well with
the features for making memory reuse randomized/delayed. This has a
the features for making memory reuse randomized / delayed. This has a
performance cost scaling to the size of the allocation, which is usually
acceptable. This is not relevant to large allocations because they're always
a fresh memory mapping from the kernel.
@ -341,7 +338,7 @@ larger caches can substantially improves performance).
## Core design
The core design of the allocator is very simple/minimalist. The allocator is
The core design of the allocator is very simple / minimalist. The allocator is
exclusive to 64-bit platforms in order to take full advantage of the abundant
address space without being constrained by needing to keep the design
compatible with 32-bit.
@ -373,13 +370,13 @@ whether it's free, along with a separate bitmap for tracking allocations in the
quarantine. The slab metadata entries in the array have intrusive lists
threaded through them to track partial slabs (partially filled, and these are
the first choice for allocation), empty slabs (limited amount of cached free
memory) and free slabs (purged/memory protected).
memory) and free slabs (purged / memory protected).
Large allocations are tracked via a global hash table mapping their address to
their size and random guard size. They're simply memory mappings and get mapped
on allocation and then unmapped on free. Large allocations are the only dynamic
memory mappings made by the allocator, since the address space for allocator
state (including both small/large allocation metadata) and slab allocations
state (including both small / large allocation metadata) and slab allocations
is statically reserved.
This allocator is aimed at production usage, not aiding with finding and fixing
@ -390,7 +387,7 @@ messages. The design choices are based around minimizing overhead and
maximizing security which often leads to different decisions than a tool
attempting to find bugs. For example, it uses zero-based sanitization on free
and doesn't minimize slack space from size class rounding between the end of an
allocation and the canary/guard region. Zero-based filling has the least
allocation and the canary / guard region. Zero-based filling has the least
chance of uncovering latent bugs, but also the best chance of mitigating
vulnerabilities. The canary feature is primarily meant to act as padding
absorbing small overflows to render them harmless, so slack space is helpful
@ -424,11 +421,11 @@ was a bit less important and if a core goal was finding latent bugs.
* Top-level isolated regions for each arena
* Divided up into isolated inner regions for each size class
* High entropy random base for each size class region
* No deterministic/low entropy offsets between allocations with
* No deterministic / low entropy offsets between allocations with
different size classes
* Metadata is completely outside the slab allocation region
* No references to metadata within the slab allocation region
* No deterministic/low entropy offsets to metadata
* No deterministic / low entropy offsets to metadata
* Entire slab region starts out non-readable and non-writable
* Slabs beyond the cache limit are purged and become non-readable and
non-writable memory again
@ -649,7 +646,7 @@ other. Static assignment can also reduce memory usage since threads may have
varying usage of size classes.
When there's substantial allocation or deallocation pressure, the allocator
does end up calling into the kernel to purge/protect unused slabs by
does end up calling into the kernel to purge / protect unused slabs by
replacing them with fresh `PROT_NONE` regions along with unprotecting slabs
when partially filled and cached empty slabs are depleted. There will be
configuration over the amount of cached empty slabs, but it's not entirely a
@ -696,7 +693,7 @@ The secondary benefit of thread caches is being able to avoid the underlying
allocator implementation entirely for some allocations and deallocations when
they're mixed together rather than many allocations being done together or many
frees being done together. The value of this depends a lot on the application
and it's entirely unsuitable/incompatible with a hardened allocator since it
and it's entirely unsuitable / incompatible with a hardened allocator since it
bypasses all of the underlying security and would destroy much of the security
value.
@ -960,7 +957,7 @@ doesn't handle large allocations within the arenas, so it presents those in the
For example, with 4 arenas enabled, there will be a 5th arena in the statistics
for the large allocations.
The `nmalloc`/`ndalloc` fields are 64-bit integers tracking allocation and
The `nmalloc` / `ndalloc` fields are 64-bit integers tracking allocation and
deallocation count. These are defined as wrapping on overflow, per the jemalloc
implementation.

View file

@ -44,7 +44,7 @@ void *set_pointer_tag(void *ptr, u8 tag) {
return (void *) (((uintptr_t) tag << 56) | (uintptr_t) untag_pointer(ptr));
}
// This test checks that slab slot allocation uses tag that is distinct from tags of its neighbors
// This test checks that slab slot allocation uses tag that is distint from tags of its neighbors
// and from the tag of the previous allocation that used the same slot
void tag_distinctness() {
// tag 0 is reserved

View file

@ -41,7 +41,7 @@ static const unsigned rounds = 8;
a = PLUS(a, b); d = ROTATE(XOR(d, a), 8); \
c = PLUS(c, d); b = ROTATE(XOR(b, c), 7);
static const char sigma[16] NONSTRING = "expand 32-byte k";
static const char sigma[16] = "expand 32-byte k";
void chacha_keysetup(chacha_ctx *x, const u8 *k) {
x->input[0] = U8TO32_LITTLE(sigma + 0);

View file

@ -98,7 +98,7 @@ class TestSimpleMemoryCorruption(unittest.TestCase):
self.assertEqual(stderr.decode("utf-8"),
"fatal allocator error: invalid free\n")
def test_invalid_malloc_usable_size_small_quarantine(self):
def test_invalid_malloc_usable_size_small_quarantene(self):
_stdout, stderr, returncode = self.run_test(
"invalid_malloc_usable_size_small_quarantine")
self.assertEqual(returncode, -6)

View file

@ -11,11 +11,9 @@
#ifndef LIBDIVIDE_H
#define LIBDIVIDE_H
// *** Version numbers are auto generated - do not edit ***
#define LIBDIVIDE_VERSION "5.2.0"
#define LIBDIVIDE_VERSION "5.1"
#define LIBDIVIDE_VERSION_MAJOR 5
#define LIBDIVIDE_VERSION_MINOR 2
#define LIBDIVIDE_VERSION_PATCH 0
#define LIBDIVIDE_VERSION_MINOR 1
#include <stdint.h>
@ -36,15 +34,8 @@
#include <arm_neon.h>
#endif
// Clang-cl prior to Visual Studio 2022 doesn't include __umulh/__mulh intrinsics
#if defined(_MSC_VER) && defined(LIBDIVIDE_X86_64) && (!defined(__clang__) || _MSC_VER>1930)
#define LIBDIVIDE_X64_INTRINSICS
#endif
#if defined(_MSC_VER)
#if defined(LIBDIVIDE_X64_INTRINSICS)
#include <intrin.h>
#endif
#pragma warning(push)
// disable warning C4146: unary minus operator applied
// to unsigned type, result still unsigned
@ -247,28 +238,18 @@ static LIBDIVIDE_INLINE struct libdivide_u32_branchfree_t libdivide_u32_branchfr
static LIBDIVIDE_INLINE struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d);
static LIBDIVIDE_INLINE struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d);
static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(
int16_t numer, int16_t magic, uint8_t more);
static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(int16_t numer, int16_t magic, uint8_t more);
static LIBDIVIDE_INLINE int16_t libdivide_s16_do(
int16_t numer, const struct libdivide_s16_t *denom);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(
uint16_t numer, uint16_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(uint16_t numer, uint16_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do(
uint16_t numer, const struct libdivide_u16_t *denom);
static LIBDIVIDE_INLINE int32_t libdivide_s32_do_raw(
int32_t numer, int32_t magic, uint8_t more);
static LIBDIVIDE_INLINE int32_t libdivide_s32_do(
int32_t numer, const struct libdivide_s32_t *denom);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do_raw(
uint32_t numer, uint32_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do(
uint32_t numer, const struct libdivide_u32_t *denom);
static LIBDIVIDE_INLINE int64_t libdivide_s64_do_raw(
int64_t numer, int64_t magic, uint8_t more);
static LIBDIVIDE_INLINE int64_t libdivide_s64_do(
int64_t numer, const struct libdivide_s64_t *denom);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do_raw(
uint64_t numer, uint64_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do(
uint64_t numer, const struct libdivide_u64_t *denom);
@ -334,7 +315,7 @@ static LIBDIVIDE_INLINE int32_t libdivide_mullhi_s32(int32_t x, int32_t y) {
}
static LIBDIVIDE_INLINE uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
#if defined(LIBDIVIDE_X64_INTRINSICS)
#if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_X86_64)
return __umulh(x, y);
#elif defined(HAS_INT128_T)
__uint128_t xl = x, yl = y;
@ -360,7 +341,7 @@ static LIBDIVIDE_INLINE uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
}
static LIBDIVIDE_INLINE int64_t libdivide_mullhi_s64(int64_t x, int64_t y) {
#if defined(LIBDIVIDE_X64_INTRINSICS)
#if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_X86_64)
return __mulh(x, y);
#elif defined(HAS_INT128_T)
__int128_t xl = x, yl = y;
@ -933,11 +914,12 @@ struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
return ret;
}
uint32_t libdivide_u32_do_raw(uint32_t numer, uint32_t magic, uint8_t more) {
if (!magic) {
uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
uint8_t more = denom->more;
if (!denom->magic) {
return numer >> more;
} else {
uint32_t q = libdivide_mullhi_u32(magic, numer);
uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
uint32_t t = ((numer - q) >> 1) + q;
return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
@ -949,10 +931,6 @@ uint32_t libdivide_u32_do_raw(uint32_t numer, uint32_t magic, uint8_t more) {
}
}
uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
return libdivide_u32_do_raw(numer, denom->magic, denom->more);
}
uint32_t libdivide_u32_branchfree_do(
uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
@ -1096,11 +1074,12 @@ struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) {
return ret;
}
uint64_t libdivide_u64_do_raw(uint64_t numer, uint64_t magic, uint8_t more) {
if (!magic) {
uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
uint8_t more = denom->more;
if (!denom->magic) {
return numer >> more;
} else {
uint64_t q = libdivide_mullhi_u64(magic, numer);
uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
uint64_t t = ((numer - q) >> 1) + q;
return t >> (more & LIBDIVIDE_64_SHIFT_MASK);
@ -1112,10 +1091,6 @@ uint64_t libdivide_u64_do_raw(uint64_t numer, uint64_t magic, uint8_t more) {
}
}
uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
return libdivide_u64_do_raw(numer, denom->magic, denom->more);
}
uint64_t libdivide_u64_branchfree_do(
uint64_t numer, const struct libdivide_u64_branchfree_t *denom) {
uint64_t q = libdivide_mullhi_u64(denom->magic, numer);
@ -1455,10 +1430,11 @@ struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) {
return result;
}
int32_t libdivide_s32_do_raw(int32_t numer, int32_t magic, uint8_t more) {
int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
if (!magic) {
if (!denom->magic) {
uint32_t sign = (int8_t)more >> 7;
uint32_t mask = ((uint32_t)1 << shift) - 1;
uint32_t uq = numer + ((numer >> 31) & mask);
@ -1467,7 +1443,7 @@ int32_t libdivide_s32_do_raw(int32_t numer, int32_t magic, uint8_t more) {
q = (q ^ sign) - sign;
return q;
} else {
uint32_t uq = (uint32_t)libdivide_mullhi_s32(magic, numer);
uint32_t uq = (uint32_t)libdivide_mullhi_s32(denom->magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
// must be arithmetic shift and then sign extend
int32_t sign = (int8_t)more >> 7;
@ -1482,10 +1458,6 @@ int32_t libdivide_s32_do_raw(int32_t numer, int32_t magic, uint8_t more) {
}
}
int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
return libdivide_s32_do_raw(numer, denom->magic, denom->more);
}
int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
@ -1627,10 +1599,11 @@ struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) {
return ret;
}
int64_t libdivide_s64_do_raw(int64_t numer, int64_t magic, uint8_t more) {
int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
if (!magic) { // shift path
if (!denom->magic) { // shift path
uint64_t mask = ((uint64_t)1 << shift) - 1;
uint64_t uq = numer + ((numer >> 63) & mask);
int64_t q = (int64_t)uq;
@ -1640,7 +1613,7 @@ int64_t libdivide_s64_do_raw(int64_t numer, int64_t magic, uint8_t more) {
q = (q ^ sign) - sign;
return q;
} else {
uint64_t uq = (uint64_t)libdivide_mullhi_s64(magic, numer);
uint64_t uq = (uint64_t)libdivide_mullhi_s64(denom->magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
// must be arithmetic shift and then sign extend
int64_t sign = (int8_t)more >> 7;
@ -1655,10 +1628,6 @@ int64_t libdivide_s64_do_raw(int64_t numer, int64_t magic, uint8_t more) {
}
}
int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
return libdivide_s64_do_raw(numer, denom->magic, denom->more);
}
int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;

7
util.h
View file

@ -32,13 +32,6 @@
#define STRINGIFY(s) #s
#define ALIAS(f) __attribute__((alias(STRINGIFY(f))))
// supported since GCC 15
#if __has_attribute (nonstring)
# define NONSTRING __attribute__ ((nonstring))
#else
# define NONSTRING
#endif
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;